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The phenomenological model describing the growth of intermetallic phases in multi-component systems is
presented. Full time-dynamics approach is applied without the often-used simplifications such as flux
constancy. General form of the species flux is considered, which consists of chemical potential gradient as a
driving force for diffusion with additional drift term. Stefan-type (moving) boundary conditions are ap-
plied. In the present form, the model assumes local equilibrium at each interface and that the process of
growth of intermediate phases is controlled by diffusion of reagents through the layers and/or chemical
reactions at the boundaries. The model is solved in its full generality. Numerical method for the solution of
the problem has been developed. Specially selected change of dependent variables transforms the moving
boundary problem into an equivalent fixed boundary problem. Such problem has been treated using the
method of lines which converts partial differential equations into a system of ordinary differential equa-
tions, which is subsequently solved numerically. The obtained solution was tested and compared with
analytic ones available in special cases, showing satisfactory agreement. The growth of intermetallic phases
in Ag/Sn/Ag system has been modeled and compared with experimental results.
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1. Introduction

Diffusion soldering technology is an effective method of
obtaining stable metal/metal interconnections using solder
which forms intermetallic phase with the joining materials.
The joint microstructure, chemical composition, and the
sequence of appearance of the intermetallic phases are impor-
tant factors that influence its stability. The important parameters
determining diffusion soldering technology are the thickness of
the solder, duration, and temperature of the process. Under-
standing of the mechanism of this process is necessary for

prediction of growth kinetics of phases and, finally, optimiza-
tion of the diffusion soldering technology.

In this article mathematical model of the process is
formulated. Method of solving moving-boundary problem is
developed. Numerical solution of the problem is verified
against analytic solutions. Comparison of the model with
experimental results is presented.

2. Mathematical Model

A model of reactive diffusion describing the growth of
intermediate phases in multi-component systems in one-dimen-
sional geometry is presented below. It includes data, physical
laws of transport processes, initial conditions, boundary
conditions, and unknowns.

2.1 Data

1. Diffusion coefficients of components (i = 1,…,r) in dif-
ferent phases (a = 1,…,f) as functions of the molar frac-
tion: Di

a(N1,…,Nr), where r and f denote the number of
components (species) and phases, respectively.

2. Initial positions of the phase boundaries: s0(0),…,
sa(0),…,sf(0).

3. Activities of the components in all phases as functions of
the molar fractions of components: ai

a(N1,…,Nr), where
i = 1,…,r; a= 1,…,f.

4. Duration (time) of the process: t̂.

2.2 Physical Laws

Mass transport in every phase is governed by the local mass
balance (continuity equation) (Ref 1):
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ðx; tÞ ¼ � @J

a
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@x
ðx; tÞ sa�1ðtÞ< x< saðtÞ; t 2 ½0; t̂�;

i ¼ 1; . . . ; r; a ¼ 1; . . . f : ðEq 1Þ

where ci
a and Ji

a denote concentration (mole/m3) and flux
(mole/m2s) of the ith component in the phase a, respectively.

The flux Ji
a in Eq 1 will be expressed as a sum of diffusive

flux (Ji
a,d) and drift flux (cit). Hence,

Ja
i ¼ Ja;d

i þ ca
i t

a: ðEq 2Þ

The diffusive part of the flux is given by the Nernst-Planck
expression (Ref 2, 3)

Ja;d
i ¼ Ba

i c
a
i

X

j

Fj; ðEq 3Þ

where Bi
a is the mobility of the ith component in the phase a;

and
P

j Fj is the sum of thermodynamic forces causing diffu-
sion. In the isothermal-isobaric conditions a diffusion flow is
generated by the gradient of chemical potential, li

a (Ref 4).
Thus, we have the following form of the diffusion flux:

Ja;d
i ¼ �Ba

i c
a
i

@la
i

@x
: ðEq 4Þ

In general, the chemical potential may be dependent on all
species in the system. By using the chain rule for derivatives,
we can express (4) as sum of gradients of concentrations (or
molar fractions) of components (Ref 5)

Ja;d
i ¼ �

Xr

j¼1
Da

ij

@ca
j

@x
; ðEq 5Þ

where partial intrinsic diffusion coefficients Dij
a in phases

a = 1,…,f are defined by the formulas:

Da
ij :¼ Da

i c
a
i

@ ln aa
i

@ca
j

: ðEq 6Þ

In some circumstances, for instance, when the growing
phase is still very thin, the gradient can be very large, and as a
consequence, the classical (continuous) description may lead
to the paradox of ‘‘infinite’’ flux. On the other hand, the
microscopic ‘‘picture’’ of diffusion is based on the jumps of
atoms (Ref 6). The length of the jump determines the maximum
feasible diffusion flux Ji,max

d (Ref 7):

Jdi;max ¼ Dici=ki; ðEq 7Þ

where ki denotes the characteristic distance for the diffusion
(jump distance of a defect). The phase exists if and only if
the diffusion flux in this phase does not exceed Ji,max

d . Thus,
this condition can be written as

Jdi � Jdi;max ¼ Dici=ki; ðEq 8Þ

The constraints on the maximum value of the flux were
earlier applied in the hydromechanics problems (Ref 8, 9),
plasma physics modeling (Ref 10), and for charge transport
processes in microelectronic systems (Ref 11, 12). The
kinetic constraint (8) for inter-diffusion problems of multi-
component systems was applied also by Danielewski and
Wakihara (Ref 7).

Thus, in this model, we will make use of the constraints on
the diffusion fluxes in each phase:

Ja;d
i � Ja;d

i;max ¼ Da
i c

a
i =k

a
i i ¼ 1; . . . ; r; a ¼ 1; . . . ; f :

ðEq 9Þ

2.3 Initial and Boundary Conditions

2.3.1 Initial Conditions. The model permits the use of
any initial concentration ca

i ð0; xÞ ¼ ca;0
i ðxÞ in each phase a. In

diffusion soldering, the initial compositions are usually simple,
for example, constant concentrations in the substrate and in the
solder, ci

a,0 and ci
c,0, respectively.

2.3.2 Boundary Conditions. The flux balance equations
at the interfaces can be formulated as follows:

ca
i ðsaðtÞ; tÞ � ca�1

i ðsaðtÞ; tÞ
� � dsa

dt
¼ Ja

i ðsaðtÞ; tÞ � Ja�1
i ðsaðtÞ; tÞ;

i ¼ 1; . . . ; r; a ¼ 1; . . . ; f � 1; ðEqu 10Þ

where sa(t) is the moving position of the phase boundary
(a� 1|a) at time t; ci

j(sk(t),t), and Ji
j(sk(t),t) are the concentra-

tion and flux, respectively, of the ith species in jth phase at
the kth boundary. The boundary conditions may be imposed
for each species at each phase boundary.

If reactions at the interface are fast—compared to the
velocities of the phase interfaces—then local thermodynamic
equilibrium can be assumed to hold at the interfaces. Conse-
quently, we can demand that chemical potentials of components
in both phases must be the same:

la�1
i ca�1

1 ; . . . ; ca�1
r

� �
¼ la

i ca
1 ; . . . ; ca

r

� �
;

i ¼ 1; . . . ; r and a ¼ 1; . . . ; f :
ðEq 11Þ

By using Eq 11, the equilibrium concentrations at the
interfaces for the boundary conditions (10) can be determined.
Subsequently, the diffusion problem given by Eq 1-11 can be
solved for each single-phase region. The velocities and
positions of the interfaces are determined by solving the flux-
balance equations (10).

2.4 Unknowns

1. Positions of phase boundaries as functions of time:
s0(t),…,sf(t) for t 2 ½0; t̂�.

2. Concentrations profiles ci
a(x, t), i = 1,…,r in each phase

a = 1,…,f for x 2 ½sa�1ðtÞ; saðtÞ� and t 2 ½0; t̂�:

2.4.1 Solution of the Model. Equations describing the
growth of multi-component layers form a system of nonlinear
partial differential equations. Moreover, situation is compli-
cated further because the positions of interfaces change with
time, giving rise to the Stefan-like problems. Hence, we will
look for a suitable numerical solution using the finite difference
method.

2.5 Numerical Solution

Theoretical treatment of growth of phases in diffusion
soldering process involves the solution of the so-called Stefan
problem (Ref 13). The growth rate is calculated from a mass
balance equation at the moving interface and suitable mass
balance equations in each phase. The problem is complicated by
the fact that the position of phase interface is also an unknown.
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With the exception of simple cases—where analytic solutions are
known (Ref 13)—numerical methodsmust be applied. Extensive
and detailed overview of these methods is provided, for example,
in Ref 14. In connection with our development, we mention here
only the Murray-Landis and enthalpy methods.

The first method was proposed by Murray and Landis
(Ref 15). It is a finite difference method which uses contracting
and expanding grids. A time-dependent grid allows the phase
interface to be always located on a grid point. The number of
grid points is constant. The motion of grid points is taken into
account by applying the following formula:

ck�1 � 2ck þ ckþ1
h2

þ s0
n� k

n

ckþ1 � ck�1
2h

; k ¼ 0; . . . ; n;

for discretization of the space second derivative @2c=@x2: The
velocity s¢ is obtained from the flux balance at the interface,
(ca+1� ca)s¢ = Ja+1� Ja using one-sided finite differences, for
example,

Jaþ1 ¼ �Daþ1�3c0 þ 4c1 � c2
2h

:

The enthalpy method uses a fixed grid. At each time step, we
keep information about the grid points between which the
interface is located. Other points belong to different adjacent
phases. After advancing in time the concentration profile, a set of
rules is applied to assign anew the grid points to one or second
phase, or to the interface region. Because at each step we know
only two adjacent points between which the interface is located,
some interpolation formula is used to obtain the approximate
position of the interface. For example, if i is the grid point closest
to the interface, the position may be calculated as

s ¼ iþ 0:5� ci � ca

caþ1 � ca

� �
h;

where h is distance between grid points, ca+1 and ca are the
concentrations close to the interface.

The aim of our method was simplicity of presentation. From
what has just been described, we can see that above methods
are relatively obscure because they address the moving
interface in its original form. Thus, we devised a simple
change of variables that transforms the moving boundary
problem to fixed boundary problem which in turn may be dealt
with by virtually any standard numerical method.

The idea of the method is presented below. Let us assume
that a system has f phases [ba�1, ba], a= 1,…,f. Concentration
of ith component in a phase will be denoted by ui

a = ui
a(x, t). In

this section an idea of numerical solution of Stefan-like
problem given by Eq 12 is described.

2.6 Equations

@ua
i

@t ðx; tÞ ¼ @
@x Da

i ua
i

� � @ua
i

@x ðx; tÞ
� �

for sa�1ðtÞ< x< saðtÞ;

s0aðtÞ ¼
Pr

i;j¼1
aa=aþ1
ij ua

i saðtÞ; tð Þ @u
a
j

@x saðtÞ; tð Þ
�

þaaþ1=a
ij uaþ1

i saðtÞ; tð Þ @u
aþ1
j

@x saðtÞ; tð Þ
�

for t > 0:

8
>>>>>>>><

>>>>>>>>:

ðEq 12Þ

where aij
a�1/a and aij

a/a+1 are known coefficients.

2.7 Boundary Conditions

Jumps of concentrations of an ith component at ath
boundary are denoted by di

a.
Then

u1i s0ðtÞ; tð Þ ¼ d1i ;
ua
i saðtÞ; tð Þ ¼ uaþ1

i saðtÞ; tð Þ þ da
i for 1 � a � f � 1;

ufi sf ðtÞ; t
� �

¼ dfi :

8
<

:

ðEq 13Þ

2.8 Initial Conditions

Let us denote the initial positions of the phase boundaries by
ba for a ¼ 1; . . . ; f . Then,

ua
i ðx; 0Þ ¼ f a

i ðxÞ for x 2 ba�1; ba½ �; a ¼ 1; . . . ; f ;
sað0Þ ¼ ba for a ¼ 0; . . . ; f :

�

ðEq 14Þ

Such formulated problem is a moving boundary problem.
For numerical computations, it is more convenient to transform
the problem with moving boundaries into a problem with the
fixed boundaries. This will be done by introducing suitable new
variables.

Let us define the following auxiliary transformation ua:

ua : ba�1; ba½ � ! sa�1ðtÞ; saðtÞ½ �

uaðx; tÞ ¼ sa�1ðtÞ þ saðtÞ � sa�1ðtÞð Þ x� ba�1
ba � ba�1

ðEq 15Þ

Using (15), we can define new variables:

va
i ðx; tÞ ¼ ua

i ðuaðx; tÞ; tÞ: ðEq 16Þ

The suitable time and space derivatives of (16) are given as
follows (ux, ut denote derivatives with respect to x and t) :

@va
i

@t
ðx; tÞ ¼ @u

a
i

@x
uaðx; tÞ; tð Þua

t ðx; tÞ þ
@ua

i

@t
uaðx; tÞ; tð Þ;

@va
i

@x
ðx; tÞ ¼ @u

a
i

@x
uaðx; tÞ; tð Þua

x ðx; tÞ;

@va
i

@x
ðx; tÞ ¼ @

2ua
i

@x2
uaðx; tÞ; tð Þua

x ðx; tÞ

ðbecause ua
x does not depend on xÞ;

ua
x ðx; tÞ ¼

saðtÞ � sa�1ðtÞ
ba � ba�1

;

ua
t ðx; tÞ ¼ s0a�1ðtÞ þ s0aðtÞ � s0a�1ðtÞ

� � x� ba�1
ba � ba�1

: ðEq 17Þ

In addition, the following relations hold:

va
i ba�1; tð Þ ¼ ua

i ua ba�1; tð Þ; tð Þ ¼ ua
i sa�1ðtÞ; tð Þ;

va
i ba; tð Þ ¼ ua

i ua ba; tð Þ; tð Þ ¼ ua
i saðtÞ; tð Þ;

@va
i

@x
ba�1; tð Þ ¼ @u

a
i

@x
sa�1ðtÞ; tð Þua

x ðx; tÞ;

@va
i

@x
ba; tð Þ ¼ @u

a
i

@x
sa�1ðtÞ; tð Þua

x ðx; tÞ: ðEq 18Þ

Using the above formulas, problems (12)-(14) can be
transformed as shown below. For simplicity of presentation,
we show calculations only for constant diffusion coefficients
(full form, i.e., for concentration-dependent diffusivities as
given in Appendix 1):
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s0aðtÞ ¼
Xr

i;j¼1
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x
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i ba; tð Þ

@va
j

@x
ba; tð Þ

 

þ
aaþ1=a
ij

uaþ1
x

vaþ1
i ba; tð Þ

@uaþ1
j

@x
saðtÞ; tð Þ

!
;

8
>>>>>>>>>><

>>>>>>>>>>:

ðEq 19Þ

Taking into account Eq 17, we can write

@va
i

@t ðx; tÞ ¼
ba�ba�1

saðtÞ�sa�1ðtÞ Da
i
@2va

i

@x2 ðx; tÞ
�

þs0a�1ðtÞ þ s0aðtÞ � s0a�1ðtÞ
� � x�ba�1

ba�ba�1

@va
i

@x ðx; tÞ
�
;

s0aðtÞ ¼
Pr

i;j¼1
aa=aþ1
ij

ba�ba�1
saðtÞ�sa�1ðtÞ v

a
i ba; tð Þ @v

a
j

@x ba; tð Þ
�

þaaþ1=a
ij

baþ1�ba
saþ1ðtÞ�saðtÞ v

aþ1
i ba; tð Þ @u

aþ1
j

@x saðtÞ; tð Þ
�
:

8
>>>>>>>><

>>>>>>>>:

ðEq 20Þ

Boundary conditions (14) in the fixed boundary problem
have the following forms:

va
i b0; tð Þ ¼ d1i ;
va
i ba; tð Þ ¼ vaþ1

i ba; tð Þ þ da
i for 1 � a � f � 1;

vfi bf ; t
� �

¼ dfi ;

8
<

:

ðEq 21Þ

and the corresponding initial conditions (14) read as

va
i ðx; 0Þ ¼ f a

i ðxÞ for x 2 ba�1; ba½ �; a ¼ 1; . . . ; f ;
sað0Þ ¼ ba for a ¼ 0; . . . ; f :

�

ðEq 22Þ

2.9 Multi-Phase Binary System

In this section, the case of diffusion soldering process in
binary system (Ag/Sn/Ag) is presented. We consider binary
system with multiple phases. Following the Darken drift idea
(Ref 16), such system may be described by one concentration,
ca(x,t), and one diffusion coefficient, ~Da; in each phase (the
chemical diffusion coefficient).

@ca

@t
ðx; tÞ ¼ @

@x
~Da @c

a

@x
ðx; tÞ

� �
;

sa�1ðtÞ< x< saðtÞ;

caþ1 � ca
� �		

x¼saðtÞs
0
aðtÞ ¼ �~Daþ1 @c

aþ1

@x
saðtÞ; tð Þ

þ ~Da @c
a

@x
saðtÞ; tð Þ; t > 0;

8
>>>>>>>>><

>>>>>>>>>:

ðEq 23Þ

where a = 1,…,f.

In general, the chemical diffusion coefficient may be
variable. However, to verify the model with experiment, we
assumed ~Da ¼ const:

Using the same type of change of variables as in (16), i.e.,
va(x,t) = ca(ua(x,t),t), and following virtually the same calcu-
lations as in (17)-(20), we arrive at

@va

@t
ðx; tÞ¼ ba�ba�1

saðtÞ�sa�1ðtÞ
~Da@

2va

@x2
ðx; tÞ

�

þs0a�1ðtÞþ s0aðtÞ�s0a�1ðtÞ
� � x�ba�1

ba�ba�1

@va

@x
ðx; tÞ

�
;

ba�1<x<ba;

s0aðtÞ¼ ~Daþ1 ba�ba�1
saðtÞ�sa�1ðtÞ

@va

@x
ba; tð Þ

� ~Da baþ1�ba

saþ1ðtÞ�saðtÞ
@vaþ1

@x
saðtÞ; tð Þ; t>0:

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

ðEq 24Þ

2.10 Numerical Solution

Original moving boundary problem (23) was transformed
into fixed boundary problem (24) that can be solved numer-
ically using standard methods, e.g., method of lines (Ref 17,
18). Space derivatives only have been discretized using second-
order scheme (see Appendix 1). Consequently, initial bound-
ary-value problem for partial differential equations has been
transformed into the initial (Cauchy) problem for ordinary
differential equations (ODEs):

dva
k

dt
¼ ~Dd ba� ba�1

saðtÞ� sa�1ðtÞ
va
kþ1 þ va

k�1 � 2va
k

h2a
þ ba� ba�1
saðtÞ � sa�1ðtÞ

s0a�1ðtÞ þ s0aðtÞ � s0a�1ðtÞ
� � kha

ba� ba�1

� �
�

�
va
kþ1 � va

k�1
2ha

; k ¼ 1; . . . ;n� 1;

s0aðtÞ ¼
~Da

d1

ba� ba�1
saðtÞ � sa�1ðtÞ �

� �3v
aþ1
0 þ 4vaþ1

1 � vaþ1
2

2haþ1
� va

n�2� 4va
n�1 þ 3va

n

2ha


 �
;

va
k ð0Þ ¼ va;0

k for k ¼ 0; . . . ;n; sað0Þ ¼ ba:

8
>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>:

ðEq 25Þ

where da ¼ ðcaþ1� caÞ
		
x¼saðtÞ is the jump of concentration at

the (a� 1|a) boundary. This value may be calculated from
the binary phase diagram, and as such it is considered here as
a known value.

The system (25) has been numerically solved using the
Radau II method for stiff system of equations (Ref 19).

2.11 Test Problem with Analytic Solution

For the test of numerical procedure, we take the well-known
problem with moving boundary which admits analytic expres-
sion for the boundary movement. A phase a grows from
homogeneous semi-infinite phase c in a binary alloy. The initial
concentration of the phase c is denoted by c¥. The local mass
balance (10) now reads
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ðcc � caÞs0ðtÞ ¼ J c � Ja; ðEq 26Þ

but we assume that the concentration in the phase a is con-
stant; thus Ja = 0. The flux Jc is governed by the standard
Fick�s law, J c ¼ �Dcð@2ccÞ=ð@x2Þ: The analytic solution to
this problem can be found, for example, in Ref 4. It states
that the phase boundary s = s(t) is moving according to para-
bolic law:

sðtÞ ¼ K
ffiffiffiffiffiffiffi
Dct
p

; ðEq 27Þ

where the growth constant K is the solution of the following
nonlinear equation:

K ¼ 2ffiffiffi
p
p X

e�K
2=4

1� erf ðK=2Þ ; ðEq 28Þ

with dimensionless parameter

X ¼ cc � c1

cc � ca
: ðEq 29Þ

The numerical solution to the test problem is presented in
Appendix 2. In Fig. 1, the thickness of the growing phase as a
function of time, s(t), for various values of parameter X are
presented. Results obtained on the proposed numerical method
corresponds well with analytic solution Eq 27-29.

3. Experiment

In order to verify the model presented above, the results of
the examinations on the diffusion modeling in Ag/Sn/Ag
system were taken (Ref 20). In this experiment, two pieces of
pure silver were soldered using Sn as an interlayer. All the
details concerning sample preparation and diffusion soldering
process are presented elsewhere (Ref 20). The experiments
were performed at the following conditions (see Table 1).

The obtained Ag/Sn/Ag interconnectors were characterized
using light and scanning electron microscopy (SEM) tech-
niques, while the Sn concentration profiles across the joints
were determined using the energy x-ray dispersive spectros-
copy (EDX) (for details see also Ref 20).

Typical examples of microstructures after the diffusion
soldering process at the temperatures 243 and 258 �C are
shown in Fig. 2.

As example, Sn composition profiles of the elements across
the joint are presented in Fig. 3.

3.1 Kinetics

For the description of the kinetics of intermetallic phase
growth, d(t), for diffusion soldering process, the following
equation has been used:

dðtÞ ¼ k � tn: ðEq 30Þ

If the value of the kinetic parameter is n = 0.5, then this
corresponds to the volume diffusion, while for range n< 0.5,
one can expect some contribution from the grain boundary
diffusion.

Fig. 1 Comparison between an analytic solution (red lines) and
numerical method (black lines) for the test Stefan problem (Color
figure online)

Table 1 Production conditions of diffusion joints
of the Ag/Sn/Ag type

Temperature, �C Time, min

230 10, 30, 60, 90, 120, 150
243 10, 20, 30, 40, 60, 80
250 10, 20, 60, 120, 180
258 20, 30, 40, 50, 60, 80
265 10, 20, 30, 60, 90, 120

Fig. 2 Light microscope image of diffusion soldering joint Ag/Sn/
Ag after annealing: (a) 243 �C for 80 min and (b) 258 �C for
50 min
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In order to determine the kinetic parameter (exponential
factor) n, the thickness of Ag3Sn intermetallic phase was
measured after various periods of time (see Table 1) applying
the following procedure.

Because of an uneven and rugged growth of intermetallic
phases along the joint, a specialized computer program was
used to evaluate the width of the selected phase. The program
probes the width in 600 points over a specified area and
calculates the average width and standard deviation (Fig. 4).

Four to six measurements were carried out for each
intermetallic phase on both sides of the joint in different and
representative areas of the sample keeping both sides parallel.
Hence, no correction of the measurements due to the slope of
the sample with respect to the optical axis of a microscope was
necessary. In addition, the locations where the intermetallic
phases grew in the form of scallops were not taken into account
which helped us to avoid larger deviations for individual
measurements. Hence, each calculated result is the average
from many measurements, and the error produced by the

program may have slightly different values even for the same
series of samples.

Figure 7 presents measured Ag3Sn phase thicknesses d(t)
vs. the annealing time t for different temperatures. The resulting
values of kinetic parameter n in the Eq 30 were determined on
the basis of log d vs. log t plots, and are listed in Table 2.

In the temperature range of 230-243 �C, a clear decrease of
the n value is visible indicating the change of the diffusion
mechanism, which can be explained by the growing contribu-
tion of the grain boundary diffusion and the decrease of the
phase boundary reaction contribution up to it, leading to the
Ag3Sn phase formation. At the temperature of 250 �C, an
anomalous decrease of the n value was noticed, which,
however, cannot be clearly explained by the present research.
At 265 �C, the n value increases again, and it may indicate the
volume diffusion as the rate controlling factor.

3.2 Modeling of Reactive Diffusion in Ag/Sn/Ag
Interconnectors

Modeling of intermetallic phase (Ag3Sn) growth for differ-
ent temperatures in Ag/Sn/Ag joints have been performed
based on the presented model. Proposed numerical method
allowed us to solve effectively the problem. For calculations,
the following data have been used:

Fig. 3 EDX linescan with 3 lm step across Ag/Sn/Ag joint at tem-
perature 243 �C for 20 min (with permission from Archives of Met-
allurgy and Materials (Ref 20))

Fig. 4 Example images of selected area for computation of the average intermetallic phase width (a), and the schema showing how the width
probing was performed to assess the intermetallic width in a joint obtain by the low-temperature diffusion soldering (b). The red lines indicate
the locations where the measurements were carried out by the program (Color figure online)

Table 2 The values of the kinetic parameter, n,
for Ag3Sn phase growth for different temperatures
of the Ag/Sn/Ag joint

Temperature, �C Parameter, n

230 0.67± 0.10
243 0.38± 0.07
250 0.17± 0.02
258 0.45± 0.07
265 0.55± 0.02

Journal of Materials Engineering and Performance Volume 21(5) May 2012—643



Data

(1) cðAgÞSn;R ¼ 0:1012 mol/mol
(2) ce

Sn;L ¼ 0:2295 mol/mol
(3) ce

Sn;R ¼ 0:2476 mol/mol
(4) cLiqSn;L ¼ 0:95 mol/mol
(5) b1 = 0 , b1 = 1910�9 m

(6) Calculated ~De ¼

230�C 3:9� 10�13 m2=s
243�C 6:3� 10�13 m2=s
250�C 1:1� 10�13 m2=s
258�C 8:2� 10�13 m2=s
265�C 1:4� 10�12 m2=s

8
>>>><

>>>>:
(7) N = 200—number of nodes in the approximation

scheme.

Explanation of the symbols used above is presented in the
Fig. 5.

The calculated diffusion coefficients have been presented in
Arrhenius plot (Fig. 6). Except for 250 �C, the points can be
successfully approximated by the linear function. At 250 �C,
the obtained parameter n was found to be 0.17. Such a value
corresponds to the significant contribution coming from grain
boundary diffusion (Ref 21). The calculated activation energy
equals 79± 13 kJ/mol. Similar value of 70.3 kJ/mol was
obtained by Su et al. (Ref 22). Flanders et al. (Ref 23) obtained
activation energy in Cu/Sn-Ag/Cu system for phase Cu3Sn to
be 70.7 kJ/mol.

In Fig. 7, Ag3Sn intermetallic phase width is calculated as a
function of time for different temperatures and compared with
experimental results showing satisfactory agreement. The
calculated kinetics of intermetallic phase growth shows para-
bolic behavior. This is the consequence of simplifying assump-
tion that the thickness of outer phases being in contact with
intermetallic Ag3Sn phase is semi-infinite. It ensures that
concentrations at the boundaries are constant. This is not the
limitation of the model, but we selected this semi-infinite
configuration based on experimental results—see, EDX con-
centration profiles taken across the joint (Fig 3).

An example of more complex configuration which leads to
non-parabolic diffusion growth is illustrated in Fig. 8 and 9.

The calculations were performed for the system with four
moving boundaries and the following data:

(1) Initial positions of the boundaries si(0) = bi = {0, 0.01,
0.02, 30}9 10�6 m

(2) Diffusion coefficients in each layer [si(t), si+1(t)],
Di = {5, 1, 0.1}9 10�13 m2/s

Figure 8 shows evolution of moving boundaries si(t), and
Fig. 9 shows thicknesses of layers, di(t) = si+1(t)� si(t), vs.
time in a parabolic plot.

It can be seen that thicknesses of the layers exhibit initial
non-parabolic growth. In particular, the first layer, d1(t), is
monotonically increasing, the third one, d3(t), is monotonically
decreasing, and the second, d2(t), shows non-monotonic
evolution.

4. Conclusions

The mathematical model describing reactive diffusion in
multi-component system with moving boundaries has been
presented. Effective numerical method to solve the problem has
been developed and applied. In the numerical approach, a
moving boundary problem was converted into the equivalent
fixed boundary problem. The resulting partial differential
equations system was treated by the method of lines which
gives a system of ordinary equations, which was subsequently
solved numerically by the Radau II method. The investigation
of the growth kinetics of intermetallic Ag3Sn phase during
diffusion soldering revealed different diffusion mechanisms.
The Ag3Sn phase grew as a product of the volume diffusion
when kinetic parameter n is close to 0.5. In this case, a good
agreement between calculated and experimental results has
been obtained. When n = 0.17 (T = 250 �C), the significant
deviation from the slope of Arrhenius plot was observed which
indicates that the model cannot be applied. In the case of strong
contribution of grain boundary diffusion, generalized boundary
conditions including non-planar geometry of the interface (2D
and/or 3D models) are necessary to describe formation of
‘‘scallops.’’ Such model will be subject of a separate article.

Fig. 5 Model of Ag3Sn intermetallic phase growth during diffusion
soldering process

Fig. 6 Diffusion coefficients for Ag3Sn intermetallic phase as a
function temperature in the Arrhenius plot
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Appendix 1: Fixed Boundary Reformulation
for Concentration-Dependent Diffusivities

By chain rule, we have from (12)

Fig. 7 Calculated width of Ag3Sn as a function of time for temperatures: 230, 243, 250, 258 and 265 �C. Comparison with experimental
results
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Substituting vi
a(x, t) = ui

a(sa(t)x, t) into this equation and
using notation E ¼ dD=du after some calculation, we obtain
(31). More details on this derivation are provided in (15)-(22).
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ðEq 31Þ

Appendix 2: Space Discretization on an Even Grid

x x x

h h

The First Derivative Inside

Let f 2 C2ð½a; b�;RÞ: Then, we have

f 0ðx1Þ ¼
f ðx2Þ � f ðx0Þ

2h
þ rðhÞ

where rðhÞ ¼ �1=6ðf 000ðn0Þ þ f 000ðn1ÞÞh2 for some n0 2�x0; x1½;
n1 2�x1; x2½:

The Second Derivative Inside

Let f 2 C3ð½a; b�;RÞ: Then, we have

f 00ðx1Þ ¼
f ðx0Þ � 2f ðx1Þ þ f ðx2Þ

h2
þ rðhÞ

where rðhÞ ¼ �1=24ðf ð4Þðn0Þ þ f ð4Þðn1ÞÞh2 for some n0 2�x0;
x1½; n1 2�x1; x2½:

The First Derivative at the Boundaries

Left Boundary. Wemay use the set of the points as above,
but this time, we want to approximate a derivative f¢(x0) at x0 by
the values of f at the points x1, x2, which lie to the right of x0. Using
two Taylor expansions at x0, we can easily calculate

f 0ðx0Þ ¼
�3f ðx0Þ þ 4f ðx1Þ � f ðx2Þ

2h
þ rðhÞ

where rðhÞ ¼ 1=3ð2f 000ðn1Þ � f 000ðn0ÞÞh2 for some n0 2�x0; x1½;
n1 2�x1; x2½:

Right Boundary. Now we want to approximate a deriv-
ative f¢(x2) at x2 by the values of f at the points x0, x1, which lie
to the left of x2. Using two Taylor expansions at x2, we can
easily derive

f 0ðx2Þ ¼
f ðx0Þ � 4f ðx1Þ þ 3f ðx2Þ

2h
þ rðhÞ:

where rðhÞ ¼ 1=3ð2f 000ðn1Þ � f 000ðn0ÞÞh2 for some n0 2�x0; x1
½; n1 2�x1; x2½:

Appendix 3: Numerical Solution to the Test Moving
Boundary Problem

The well-known problem which admits analytic expression
for the boundary movement (Ref 4) is given by

@u

@t
ðx; tÞ ¼ D

@2u

@x2
ðx; tÞ for 0< x< sðtÞ;

s0ðtÞ ¼ �a
@u

@x
ðsðtÞ; tÞ for t > 0;

uðx; 0Þ ¼ c1; uð0; tÞ ¼ c1; uðsðtÞ; tÞ ¼ cc;

sð0Þ ¼ b;

8
>>>>>>><

>>>>>>>:

ðEq 32Þ

where a = Dc/(cc� ca). We can define new variable
v(x, t) = u(s(t)x, t) for 0 £ x £ 1. The suitable time and
space derivatives of (32) are given as follows:

Fig. 8 Positions of the boundaries as function of time Fig. 9 Thicknesses of layers as function of time—parabolic plot
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ð1; tÞ;

s0ðtÞsðtÞ ¼ �a
@v

@x
ð1; tÞ: ðEq 33Þ

Using above formulas the problem (32) can be transformed
as follows:

@v

@t
¼ D

s2ðtÞ
@2v

@x2
þ s0ðtÞ

sðtÞ x
@v

@x
;

s0ðtÞ ¼ � a
sðtÞ

@v

@x
ð1; tÞ; sð0Þ ¼ b;

vðx; 0Þ ¼ c1; vð0; tÞ ¼ c1; vð1; tÞ ¼ cc;

for x 2 ½0; 1�; t � 0:

8
>>>>>>>><

>>>>>>>>:

ðEq 34Þ

Defining the auxiliary function n(t) = s(t)2 and consequently
n0ðtÞ ¼ 2sðtÞs0ðtÞ ¼ �2að@vÞ=ð@xÞð1; tÞ and introducing them
into (34), we obtain:

@v

@t
¼ D

nðtÞ
@2v

@x2
þ 1

2
x
n0ðtÞ
nðtÞ

@v

@x
for 0< x< 1;

n0ðtÞ ¼ �2a @v
@x
ð1; tÞ; nð0Þ ¼ b2;

vðx; 0Þ ¼ c1; vð0; tÞ ¼ c1; vð1; tÞ ¼ cc:

8
>>>>><

>>>>>:

ðEq 35Þ

Problem (35) has been solved using (standard methods for
partial differential equations) method of lines (Ref 17) and
Radau II method for stiff system of ODEs (Ref 19).
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